Velopharyngeal Dysfunction: A Review of Identification Techniques, Evaluation Protocols and Treatment Strategies

Cara Werner, MA, CCC-SLP cara.werner@cchmc.org

1

3

2

Conflict of Interest

- Financial: Employed within the Division of Speech-Language Pathology at Cincinnati Children's
- Nonfinancial: Nothing to disclose

Learner Outcomes

- 1. To identify types of velopharyngeal dysfunction and treatment recommendations for each.
- 2. To explain simple ways to screen for resonance and nasal emission
- 3. To name recommended next steps when working with a child who has resonance/VPD concerns.
- 4. To describe treatment techniques to successfully target cleft speech characteristics.

Velopharyngeal Dysfunction (VPD)

Normal Velopharyngeal Function

- Structures involved in velopharyngeal closure include:
 - Velum (soft palate)
 - Posterior pharyngeal wall
 - Lateral pharyngeal walls

Normal Velopharyngeal Function

• Velum at rest

6

5

Velopharyngeal Insufficiency (VPI)

• The soft palate is unable to close against the posterior pharyngeal wall when speaking due to being too short or scarring

Velopharyngeal Insufficiency (VPI)

- VPI can cause the following cleft speech characteristics:
 - Hypernasality: nasal speech quality
 - Nasal emission: air escaping through the nose during speech
 - Nasal rustle: a form of nasal emission caused by air escaping through a very small opening
 - Speech sounds may be quiet, low in intensity and pressure or weak
 - Abnormal speech sound production skills

9 10

Velopharyngeal Insufficiency (VPI)

- Velopharyngeal insufficiency does not cause:
 - Limited verbal output or limited vocalizations

VPI Causes

8

- · Cleft palate
 - The palate is too short, there may be poor movement due to muscle positioning, scarring or a combination
- 22q11.2 deletion syndrome (Velocardiofacial syndrome)
 - With or without cleft palate, abnormal structures and positioning, size/distance relationship, and differences with velar thickness are typically appreciated
- VPI following adenoidectomy

11 12

22q11.2 Deletion Syndrome

- Majority of children present with receptive and expressive language delays
 - Most do still develop as verbal communicators
 - Cognitive delays, social and behavioral needs can often be present
- Decreased speech sound production skills with more significant articulation disorder compared to isolated cleft palate
 - Apraxia, dysarthria, VPD, and/or articulation substitutions can all be present

22q11.2 Deletion Syndrome

- 22q11.2 deletion syndrome is the most common genetic cause of VPD
 - VPD should be assumed in these patients until we are able to rule it
- The velum is thinner and the pharynx is deeper in those with 22q compared to nonsyndromic children without cleft palate
- The levator muscle is thinner and shorter

13 14

Screening for VPI

15 16

Speech Sample

- A lot of information can be obtained by eliciting and analyzing a speech sample
 - Formal testing is not needed to screen for VPI
 - Having the child imitate sentences is best, but syllable repetition can also be valuable
- Tools required include a flashlight for an oral examination and a straw
- Steps include: 1. oral examination 2. elicit a speech sample 3. assess for resonance and nasal emission

Oral Examination

- Pay attention to dentition and bite pattern
- Look at integrity of the palate and assess for fistulae or evidence of a submucous cleft palate
- A high arched palate typically does not cause any functional deficits

17 18

.9

What to Evaluate

- Are you hearing nasalized consonants?
 - Primarily use of /m/ and /n/ in place of oral consonants with same placement
- Are you hearing increased nasal resonance?
 - Hypernasality
- Does the child sound like they are congested or "stopped up"?
 Hyponasality
- Do you hear air escaping through the nose when speaking?
 - Nasal emission
 - Is the nasal emission present on all sounds or only certain sounds?

21 22

How to Evaluate

Voiceless Plosive Syllable Repetition

/p/ pa, pee, puppy /t/ ta, tee, teddy /k/ ka, kee, cookie /s/ sa, see, sixty /m/ ma, mee, money

- No air on /p/, /t/, /k/ and /s/ indicates normal velopharyngeal function
- Air on /p/, /t/, /k/, and /s/ indicates velopharyngeal dysfunction
- Air on /s/ with no air on /p/, /t/, or /k/ could suggest velopharyngeal mislearning (phoneme-specific nasal emission)
- No sound for /m/ could suggest hyponasality
- · Hearing sound suggests hypernasality

Next Steps

- If you are the first one identifying concerns, the child needs to be referred to a VPI Clinic or Craniofacial Center at a pediatric hospital
 - $\!-$ Only craniofacial plastic surgeons or ENTs with specialized training are equipped to treat VPI
 - Pediatricians or general practice ENTs have little to no training in velopharyngeal dysfunction
- An American Cleft Palate Craniofacial Association approved team is best practice

23 24

Diagnosing VPI

- VPI is diagnosed by a trained SLP who then confirms the need for surgical correction
- Most SLPs trained in VPI also are affiliated with a pediatric hospital and craniofacial team
- The role of SLPs without this specialty training include
 - Knowing the red flags
 - Knowing when to refer on
 - Knowing what cannot be corrected and should not be targeted in treatment

Diagnosing VPI

- To diagnosis VPI, a child needs to be able to:
 - Follow a variety of directions
 - Be combining words into phrases and sentences spontaneously
 - Imitate regularly on command

25

26

Management for VPI

Treatment

- Treatment for velopharyngeal incompetence may include surgery or often includes a prosthetic device
- We will focus on treatment for velopharyngeal insufficiency, which always includes surgery

27

28

Treatment

- VPI along with associated characteristics (hypernasality and nasal emission) can *never* be corrected with speech therapy
- Nonspeech oral motor exercises for purposes of improving velopharyngeal function should *always be avoided*, just like they should be avoided for articulation errors

Surgical Intervention Options

- Surgical recommendations are dependent on resonance evaluation findings and imaging through nasopharyngoscopy
- Options utilized at CCHMC include:
 - Injection pharyngoplasty
 - Furlow palatoplasty
 - Bilateral myomucosal buccal flaps
 - Pharyngeal flap

29

31

33

35 36

Relationship to Development

- Cleft palate history puts kids at risk for delayed speech and language skills
 - Language acquisition can be impacted if the cleft is accompanied by additional diagnoses
 - If hearing is impacted by poor Eustachian tube function, early language learning can also be impacted
 - Reduced consonant inventory, limited oral placement for phonemes or increased errors can be seen

Relationship to Speech and Language Development

- A meta-analysis published in 2019 found that young children (birth to age 8) with nonsyndromic CL/P perform significantly below peers in:
 - Consonant inventory
 - Speech accuracy
 - Expressive and receptive language acquisition
- Discrepancy between CL/P individuals and peers decreases as age increases
- Several limitations including evaluation tool variety and varying chronological ages for matched peers

37 38

Relationship to Speech and Language Development

- Reduced consonant inventory is a risk prior to and after initial palate repair
- In looking specifically at stop consonants, children impacted by CL/P may take longer to acquire stop consonants, specifically after surgery.
 - 21% producing oral stops 3 months post-op, 95% producing stops 9 months post-op
- Voiced stops emerge before voiceless stops for both cleft and noncleft cohorts
- Early identification and early intervention is key to support success

40

Early Language Learners/Late Talkers

- · Be familiar with history and red flags to watch for
 - Limited consonant inventory
 - Deficient placement for speech sounds
- Don't feel pressured to rush towards targeting articulation
- Focus should continue to be quantity over quality until receptive and expressive language increase
- Incorporate stimulation for early developing phonemes into language targets and vocabulary teaching

39

Early Language Learners/Late Talkers

- Phonemes to emphasize and model: /m/, /n/, /w/, /y/, /h/, /p/, /b/, /t/, /d/, and any fricative!
 - /m/ and /n/ are nasals so correct placement can always be expected regardless of palate function
- We want to elicit correct placement and use of articulators
 - At this point, ignore if consonants are nasalized or you appreciated nasal emission, just honor attempts and use of articulators
- Think of words that include low pressure phonemes, visual phonemes and phonemes that include a lot of auditory feedback!

41 42

Indications for Speech Therapy

- What can be targeted *before* surgery includes:
 - Improved placement for phonemes
 - Bilabials
 - Lingual-alveolars
 - Sometimes, attempts at oral airflow for fricatives
- What cannot be targeted before surgery
 - Eliminating nasalized consonants
 - Eliminating nasal emission

Indications for Speech Therapy

- What can be targeted after surgery
 - Eliminating the use of active, compensatory errors
 - Nasalized consonants
 - Nasal and pharyngeal fricatives
 - Glottal stops
- What cannot be targeted after surgery
 - Eliminating hypernasality
 - Eliminating residual nasal emission

43 44

Speech Therapy Follow VPI Intervention

- It is typical to see limited change in speech immediately after surgery
- This does not mean that surgery was not successful if these errors remain
 - Surgery addresses structure
 - Therapy then teaches function and how to utilize new structures

Speech Therapy Follow VPI Intervention

- Begin by working on discrimination skills to ensure child can hear and identify difference between error and preferred target
- Use basic language

46

– "nose sound" vs "mouth sound" vs "throat sound"

45

Speech Therapy Follow VPI Intervention

- Once child is accurately discriminating, begin by selecting targets
- Think out of the box and select targets based on stimulability rather than typical hierarchy
- Always check for stimulability in various positions of words to determine starting position
- Avoid targeting velars as first target unless highly stimulable
 - We want to improve bringing placement anteriorly rather than reinforcing posterior placements

Speech Therapy Follow VPI Intervention

- Be mindful of dentition
- Accept what may appear to be a frontal distortion if the child has a crossbite or maxillary hypoplasia
- Accept reverse labio-dentals or bilabial fricatives for /f/ and /v/ if the child has a crossbite or maxillary hypoplasia

47 48

Techniques

Bilabial stops /p/ and /b/

- Start from /m/ and occlude nose to elicit /b/
- Begin 'popping lips' and then include tissue for visual feedback for air release
- Use /h/ to avoid glottal stop substitution
- Consider starting in final position
- Prompts for a 'whisper' as needed

Alveolar stops /t/ and /d/

- Start from /n/ and occlude nose to elicit /d/
- Elevate tongue tip to teeth and then move tongue back as dentition allows
- Shaping from /l/, /s/ or /th/
- Use /h/ to avoid glottal stop substitution
- Consider starting in final position
- Prompts for a 'whisper' as needed

Techniques

Fricatives and affricates

- Probe for stimulability to find starting point (different phonemes, different word positions etc.)
- Shape from /t/ using 'long /t/' technique
- Consider shaping from /f/ or /th/ if patient is stimulable
- Use straw in front of teeth for auditory feedback

Velars /k/ and /g/

- Unless these are the only stimulable sounds, avoid targeting as initial focus
 - Remember focus being to acquire new, anterior, oral sounds for many of these kids
- · Pair with high vowels
- · Attempt in final position

49 50

Velopharyngeal Mislearning (Phoneme-Specific Nasal Emission)

- Incorrect articulation placement with manner maintained in the setting of typical anatomy
- Can impact one phoneme or a variety of phonemes
 - Most often /s/ and/or /z/, but also can include /f/, /sh/, /ch/, /j/ and/or /th/

Velopharyngeal Mislearning (Phoneme-Specific Nasal Emission)

- Begin by reinforcing desired placement for sounds "mouth sounds" instead of "nose sounds"
- Increase awareness by pointing out sounds that are being produced correctly in the mouth
- Explore to see if any sounds in error are correct in any positions of words
- Start in isolation, shaping from like phonemes as able -/t/to/s/,/th/to/s/,/f/to/s/etc.
- Don't feel pressured to work on multiple sounds at a time

51

Takeaways for Treatment

- Try not to be too concerned about VPI too early
- Prioritize language expansion and incorporate speech stimulation techniques
- $\bullet \;\;$ When there is VPI, placement can still be targeted in treatment before surgery
- After surgery, ignore typical developmental hierarchies for sound acquisition and choose targets based on stimulability
- Use shaping from other phonemes as needed
- Provided explicit feedback using anatomical terms
- Great articulation progress can be made even if VPI cannot be fully eliminated
- Don't be afraid to ask for help!

Resources

ACPA

52

- https://acpacares.org/ Find an ACPA approved C
- Find an ACPA approved Cleft and Craniofacial Team: https://acpacares.org/team-care/
 ASHA
- https://www
- Informed SLP
 Speech Therapy for Cleft Palate Part One: https://www.theinformedslp.com/review/speech-therapy-for-cleft-palate-part-o
- assessment-and-referrals

 Speech Therapy for Cleft Palate Part Two: https://www.theinformedslp.com/review/speech-therapy-for-cleft-palate-part-two
- Leaders Project
- https://www.leadersproject.org/ceu-courses-2/english-cleft-palate-speech-therapy-evaluation-and-treatment-asha-0-5-ceu-self-study-course/
- Allison Fors

 https://allisonfors.com/cleft-lip-and-palate/

53 54

References

- Cordero, K., Baylis, A., Chapman, K., Frazer, A., Lien, K., Trost-Cardimone, J., & Wilson, Y. Cleft polate speech assessment practice: Rating speech parameters with the CAPS-A-AM. Presented at the 2004 Cleft Palate-Craniolicus Meeting, May 2004, Demor, Colorado. White Caps are considered to the Caps of Caps o

